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Abstract. We consider a two-dimensional cellular automaton whose rule consists of two 
subrules. The first, applied synchronously, is a local rule inspired from the ‘game of life’, with 
B larger neighbourhood. The second, applied sequentially, describes the motion of a fraction 
m of individuals. Such rules appear to be useful for modelling complex systems in ecology, 
such as natural populations of animals. in which the motion of the individuals is believed 
to ploy an important role. If lhe motion is long-range, the density of individuals exhibits a 
sequence of period-doubling bifurcations and behoves chootidly when m is Ixge enough. If  
the motion is short-range (i.e. restricted to first neighbours). patterns become inhomogeneous, 
Spatial correlations decay with a hnite correlation length 6 of the order of A. We observe 
the formation af domains, of mean width 6 ,  with a chaotic behaviour of the local density of 
individuals, but the collective behaviour is stiltioniuy (the global density tends to a fixed value 
when the lattice size is much larger than 6 x 6 ) .  

1. Introduction 

Natural populations of plants and animals exhibit various patterns of fluctuations about long- 
term averages. Many species have a roughly constant population density while others exhibit 
large fluctuations with cyclic or quasi-cyclic behaviour. An excellent introduction to this 
topic is given by May (1985). A well known example is the fluctuations of the Canadian 
lynx population as documented in the data compiled by the Hudson Bay Company over 
the period 1735-1940. Oscillations with a roughly constant period of about 10 years are 
observed with large amplitude fluctuations, which, as stressed by Schaffer (1984, 1985). 
could correspond to chaotic behaviour. 

May has shown how simple deterministic models based on finite-difference equations 
can lead to complex behaviour. The dynamics of a single population density c is usually 
modelled by a simple finite-difference equation 

which means that birth and death rates depend only on the global population density ~ ( t ) .  
The relation is likely to be such that relatively low values of c increase rapidly from 
one generation to the next while relatively high values of c tend to decrease. Hence 
the nonlinear function F has a characteristic shape with a maximum, which can lead, 
as a function of its curvature, to chaos through the familiar cascade of period-doubling 
bifurcations (Feigenbaum 1978). 
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Unfortunately, such a global description does not take into account the local character 
of individual behaviour. Cellular automata networks offer a simple and natural frame for a 
more subtle model including the local interaction between individuals. 

A single population on a discrete two-dimensional lattice is represented by a two- 
dimensional automata network. Each site is either vacant (state 0) or occupied by one 
individual (state 1). A realistic model for the time evolution of animalpopulations should 
include both local interactions and possible motion of individuals. Hence we consider an 
automaton rule which consists of two SubruleS. 

(i) The first one, applied synchronously, is a standard deterministic cellular automaton rule, 
which models local interactions between the individuals. Following the global models 
for population dynamics discussed by May, here we assume that the local birth or death 
rate at site i only depends on the local population density (i.e. total number of I in a 
finite neighbourhood). More precisely we choose an outer totalistic law defined on a 
Moore-type neighbourhood-cf Wolfram (1983)-i.e. the state s(t + 1, i) of the site i 
at time t + 1 is a function f(s(t, i). u(t.  i)) of the state s ( t ,  i) at time t 3nd of the sum 

The Moore-type neighbourhood M ( i )  of site i contains all sites deduced from i by a 
translation r = p x  + qy. where p and q are non-zero integers varying between -r and 
r (r is the range of the rule). x and y are elementary translation vectors on a square 
lattice: 

if I: otherwise 
S,, 6 U Q S,, f (1.0) = 

if B,, Q U Q B,, 
0 otherwise. 

Such rules are inspired by the 'game of life', i.e. individuals survive if the neighbourhood 
is not too crowded or too poorly populated and birth also occurs at a vacant site if the 
number of neighbours satisfies some stringent constraints. We expect such rules to apply 
quite generally to animals which cannot survive if they are isolated and which die from 
food scarcity if the neighbourhood is too crowded. 

(ii) The second one, which describes the motion of the individuals, moves sequentially over 
a fraction of non-zero sites. More precisely, an individual (non-zero site) selected at 
random is moved to a site, also selected at random, if this site is empty (zero site). The 
motion can be long-range (a non-zero site can move to any site) or short-range ( i t .  
restricted to first neighbours). This operation is repeated m x c(m, t )  x N times, where 
N is the total number of sites, and c (m,  t )  the density of non-zero sites at time t .  It is 
important to note that, although this process does not change the number of individuals, 
it partially destroys the correlations created by the basic automaton without mixing. 
Starting from the same initial condition, the time evolution of the concentration will be 
different from that obtained with the basic automaton without mixing and c depends 
both on m and t .  With this definition, the number of effective moves of non-zero sites 
is mc(m, t ) ( l  - c(m, t ) ) N .  

When m is large, all the correlations created by the cellular-automaton rule are destroyed, 
and the evolution of the density of non-zero sites is correctly predicted by a mean-field-type 
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Figure 1. Stationary state obtained with m = 0. after a few hundred time steps, starting from a 
random distribution of non-zem sites with c(0,O) = 0.5 on a 256 x 256 lattice. 

approximation, which otherwise is often far from being correct in the absence of motion 
(Bidaux et al 1989, Chat6 and Manneville 1991). The population dynamics obeys an 
equation similar to (1). 

As a typical and realistic example for a single population we choose 

r = 2  , S,i, = I  Sm, = 14 &in = 8 B,, = 10. 

For m = 0, starting from a random distribution of c(0,O) = 0.5 non-zero sites, we 
obtain a stable configuration after a few hundred time steps, as shown in figure 1. This 
rule is of class 2, according to Wolfram's classification (1983). For sufficiently large m ,  
the population dynamics are correctly predicted by a mean-field approximation. The mean- 
field approximation ignores space dependence and neglects correlations. The mean-field 
evolution for the density c ( t )  of non-zero sites a time t reads 

(2) 

It has a chaotic temporal behaviour. 
It is very interesting to study the behaviour of this automata network for intermediate 

values of the mixing parameter m. 
A preliminary academic study on some one-dimensional class-3 cellular automaton rules 

with long-range moves has been published by Boccara and Roger (1992). The first part 
of the paper is a generalization to two-dimensional models which are more realistic for 
modelling ecological systems. The results are basically the same (they do not depend 
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on the dimension or on the class of the rule). For long-range moves, as m increases, the 
stationary value of the density of non-zero sites follows a route to chaos through the familiar 
cascadt: of period-doubling bifurcations. 

In the second part we show that for short-range moves the behaviour is rather different. 
As m increases, the patterns become inhomogeneous. Spatial correlations decay with a 
finite correlation length 5 of the order of 2/;;;. We observe the formation of domains of 
mean width of the order of ( with a chaotic local density. However, when the size of the 
lattice is much larger than x e ,  the global density of non-zero sites tends to a fixed point. 

A similar behaviour with spatial disorder and stationary collective variables is generally 
obtained in one-dimensional lattices of coupled logistic maps with periodic boundary 
conditions (Kaneko 1984, Bohr eta1 1987, Rasmussen and Bohr 19871, while more striking 
non-trivial collective behaviours are observed in higher dimensions (Chat6 and Manneville 
1992). 

2. Long-range moves 

For long-range moves, the results are similar to those obtained in one-dimension with class- 
3 rules (Boccara and Roger 1992). For small m, the density of non-zero sites c(m, #) tends 
to a fixed point c(m, CO) as t tends to 03. As m increases, the stationary value of the density 
of non-zero sites follows a route to chaos through the familiar cascade of period-doubling 
bifurcations. The bifurcation diagram for a 1024 x 1024 lattice is shown in figure 2. m is 
varied adiabatically by steps of 0.025 (figure ?-(a)) or 0.005 (figure 2(b)), i.e. after varying 
m we start from the configuration obtained at large time for the preceding m. For each 
value of m, the first 100 iterations are discarded and the values of the density c(m, t )  for 
the next 100 iterations are plotted on the diagram of figure 2(a). Figure 2(b) represents 
an enlargement of the bifurcation diagram close to the second and third bifurcations. To 
improve the observation of the period-8 cycle. points are averaged over 12 cycles. 
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Figure 2. Bifurcation diagram for the stationary value c(m. w) of the density of non-zero sites 
for long-range moves. (a) Overdl diagram with N = 1024 x 1024 sites. ( b )  An enlargcment of 
the region corresponding to the second and third bifurcation. To improve the observation of the 
period-8 cycle the points shown here represent averages over 12 cycles. For different values of 
i the inset shows a plof of c(m. r + 1) versus e h ,  t) with m = I (t) and ,n = 2 (0). As m 
increases, the poinu come close to the mean-field map (full curve) represented by (2). 
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The first three bifurcation points are ml = 0.420k0.005, m2 = 0.865+0,005 and m3 = 
0.955f0.005. Due to the fact that the size of the lattice is finite, the full sequence of period- 
doubling bifurcations cannot be observed. The Feigenbaum constant 6 (Feigenbaum 1978) 
is the limit as n goes to 00 of the sequence (an), where 6, = (mn+t - m,,)/(m,+z - m.+l). 

From the first three bifurcation points, we find that 61 = 4.9 i 0.5, which is compatible 
with the universal value 4.67 obtained for 8,. 

As shown in the inset of figure 2(a), when m is large, the dynamics are close to that 
predicted by the mean-field map (2). 

3. Short-range moves 

Figure 3 represents a diagram obtained for short-range moves on a '256 x 256 lattice, with 
the procedure used for figure 2(u). Although some chaotic behaviour appears on finite- 
size lattices for sufficiently large m,  there is no evidence of a cascade of period-doubling 
bifurcations. Indeed, as m increases, patterns become inhomogeneous. Figure 4 compares, 
at two consecutive times, the patterns obtained with m = 100 on a 512 x 512 lattice. 
Figure 5 represents two patterns obtained at consecutive times with m = 1600 on the same 
lattice. We observe the formation of domains with regions of low and high densities of 
non-zero sites. Within a domain, the local density of non-zero sites oscillates. There are 
some similarities with the 'kink-anti-kink patterns' observed by Kaneko (1984) in a one- 
dimensional lattice of coupled logistic maps. However, here the frontiers between domains 
are highly mobile and it is difficult to follow one domain over more than 5-10 time steps. 
With m fixed, if the lattice size increases and becomes much larger than the mean size of 
domains, the global density of non-zero sites tends to a stationary value. 

I I 1 1 1 1 1 1  ' ' ' Fiym 3. Same diagram as figure 2(0), with short-mge 
10 100 m moves on B 256 x 256 lattice. 

The size of these domains increases with n. It is interesting to estimate it more 
quantitatively. The mean width of these domains has been computed as follows. After 
a transient of a few hundred time steps, we measure the mean density c of non-zero sites 
over about one hundred time steps. For a given pattern at time f, we define a local density 
C ( x ,  y)  as the mean concentration of non-zero sites in a 16 x 16 square centred at ( x ,  y). We 
associate with each site at ( x ,  y )  a Boolean variable b(x ,  y) which is one if ? ( x ,  y) > c and 
zero otherwise. Then on a given line yo we count the number of segments v(1) corresponding 
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Figure 4. Typical patterns oblained a1 two consecutive times after about 100 time steps on a 
512 x 512 lattice with m =ZOO. 

to sequences of I zeros or I ones along x .  We then sweep y and add the contributions of 
all lines. A mean value of L'([) is obtained by averaging over 200 patterns obtained at 
consecutive time steps, after a transient of a few hundred time steps. 

Figure 6 represents, on a semi-logarithmic scale, the results for U(/) obtained with the 
same m = 100 and different lattice sizes. An interesting result is that the distribution u ( l )  
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Figure 5. Same xs figure 4, with m = 1600 

follows a simple exponential law. It is also clear from this figure that the domain mean 
width is independent of the lattice size N .  

Figure 7 compares, for the same 512 x 512 lattice and different m, the distributions U as 
a function of l/&. The distributions of the linear domain size scale as u(l)  % exp(-l/<) 
with < = 4 , I f i .  The characteristic length { gives an order of magnitude of the mean 
domain width, i.e. the mean area of the domains scales as m. 
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0.1 
0 100 200 

Figure 6. Domain-width distribution "(1) as a function 
of I for vwlous lattice sizes and same value of m 
(m = 100). As defined in the text, Y is proponional 
to thc lattice area N. 

F i p e  7. Domain-width distribution w ( i )  as a function 
of 1 = f f f i  for a 512 x SI2 lattice and increasing 
values of m. 

.- 
). I Figure 8. Semi-logarithmic plot of the spatial correlation 

function C in term of lf&: m = 100 (0). m = 200 ( x )  
IOAI, I ,  1 ,  - .  I I ,  ' I . ,  - 7  

4 1 / & 8  and m = 400 (t), 

The loss of spatial coherence is generally characterized by a decay of the spatial 
correlations with a finite correlation length (see, for example, Rasmussen and Bohr 1987). 
On a 512 x 512 lattice we have measured the correlation function 

C(I) = ( ( E ( i )  - c)(E(j) - c)) (3) 

where c is the stationary value of the global concentration for N 4 00 and C ( i )  is the 
'local' concentration measured on a 16 x 16 square centred at i. The bracket represents 
the mean value over all pairs {i, j J  with distance d( i ,  j )  = 1 on the lattice. To improve the 
statistics. our values are averages over patterns obtained during a few hundred time steps 
after discarding a transient of about one hundred time steps. A semi-logarithmic plot of C 
as a function of l l f i  is represented in figure 8 for various m. The correlation function 
decays roughly exponentially with a correlation length of 5 2.1fi, of the same order of 
magnitude as 5 .  
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The short-range mixing corresponds to a diffusion process which moves non-zero sites 
over a distance f i  at each time step. The correlation length appears to be of the order of 
magnitude of the ‘effective’ range of the global rule defined for this model. 

4. Conclusion 

A specific ensemble of cellular automaton rules with local ‘game-of-life type’ interactions 
and short- or long-range motion of the individuals (non-zero sites) has been studied. Such 
rules are sufficiently realistic to model a variety of single-animal populations in  ecology. 

If the mean-field equation is chaotic, for long-range moves the stationary density of non- 
zero sites follows (as a function of the parameter m, characterizing the degree of mixing) a 
route to chaos through the usual period-doubling bifurcation cascade. 

For short-range moves we d o  not observe a global chaotic behaviour, but spatial disorder 
characterized by an exponential decay of the correlation function with a finite correlation 
length 5 of the order of fi. 

Patterns are split into domains of width of the order of 4 .  In a domain, the local density 
of non-zero sites behaves chaotically. However, the mean density over the whole lattice 
tends to a fixed value as the lattice area increases much beyond x < (i.e. much beyond 
m). 

Such a model could have some relevance for quasi-periodic or chaotic behaviours 
observed in real single populations in ecology (May 1995, Schaffer 1984, 1985). Moreover 
the model exhibits, for short-range moves, an interesting behaviour with a chaotic time 
evolution at the scale of the mean displacements of individuals but a stationary value at 
larger scales which could be relevant for animals having a finite habitat. 

As emphasized by May (1985), one should, however, keep in mind that isolated single 
populations are likely to be found only in laboratories. In the natural world, interactions 
with other species are usually very important. Coupled systems with two or more interacting 
populations are more realistic. More intricate predator-prey models (Boccara, Roblin, 
and Roger) or epidemic models (Boccara and Cheong 1992, 1993) with two interacting 
populations have been studied recently, using cellular automata. These models also exhibit 
complex dynamics with cyclic or quasi-cyclic behaviours. 
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